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Abstract Carbon nanotubes are special nanostructures due to their unique mechani-
cal and electronic properties. One of the proposed applications is a container for drug
delivery. In this paper, we consider two-section carbon nanotubes for their uses as
nanocapsules to encapsulate a single atom and a C60 fullerene. The Lennard-Jones
function and the continuous approach are employed to determine the molecular inter-
actions. Moreover, the explicit forms of their interaction energies are determined.
The suction energies are utilised to determine the encapsulated conditions of both
nanoparticles, where they depend on the radii of the particle and the nanocapsule.
This theoretical study can be thought of as the first step to design the nanocapsule for
the drug delivery devices.

Keywords Two-section carbon nanotube · Lennard-Jones potential function ·
Suction energy · Encapsulation behaviour

1 Introduction

The discovery of carbon nanotubes by Iijima [1] has created enormous impact in many
scientific areas. Because of their unique mechanical and electronic properties [2] such
as high strength, low weight, thermal stability, and flexibility in changing volume for
providing a higher payload capacity [3], carbon nanotubes have attracted considerable
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attention for applications in nanobiotechnology. For example, carbon nanotubes may
be used as drug and gene containers for applications in pharmaceuticals and cosmetics
[4]. Researchers believe that drugs contained in the nanotubes can be directed to the
target cell [5] and then taken up by the cell nucleus [6]. This is the concept of magic
bullet proposed by Paul Ehlrich [7].

Since nanocapsules are high-pressure vessels, adsorbents and safe-keepings which
are described in [8]. Vakhrushev et al. [8] designed a nanocapsule which comprises a
combination of three nanotubes : (20, 20), (10, 10) and (8, 8) for methane container.
They constructed a fill-and-lock system by the aid of a locking particle. Following
the work by Vakhrushev et al. [8], we firstly design a nanocapsule by combining two
sizes of carbon nanotubes and refer to it as a two-section carbon nanotube. We note
that the mathematical derivation for the three or more sections of carbon nanotubes
can be determined using the same approach described later in the text.

In this research, we use the concept of suction energy proposed by Cox et al. [9]
to determine whether an atom and a C60 fullerene will be encapsulated into a two-
section nanocapsule by the van der Waals forces alone. The van der Waals interaction
can be obtained by three formulae, a discrete atom-atom model, a continuous model,
and a hybrid discrete-continuous approach. Hilder et al. [10] calculated the interac-
tion energies between an atom and a carbon nanotube using the three approaches and
found that they give similar results. They also stated that the most suitable approach
for symmetrical structures is a continuous approximation. The interaction energies
of many C60-nanotube systems have been studied using a continuous approximation
[11–14]. In this research, we use the continuous approximation to determine the inter-
action energies between a two-section carbon nanotube and nanoparticles. Further,
the Lennard-Jones function is employed as a potential function for the systems of
non-polar interactions considered here.

Cox et al. [9] studied the mechanics of atom and fullerene in single-walled carbon
nanotubes by considering the acceptance conditions and suction energies. In the atomic
case, they concluded that the carbon nanotube will accept an atom when the tube radius
is greater than 3.276 Å, and the maximum suction energy occurs when the tube radius
is 3.739 Å. For the interaction between a C60 fullerene and a carbon nanotube, they
found that when the tube radius is greater than 6.338 Å, the tube will accept a C60
fullerene and the maximum suction energy occurs when the tube radius is 6.783 Å.
Baowan et al. [15] considered the suction behaviours of TiO2-nanoparticles into single-
walled carbon nanotubes using the Lennard-Jones potential. They found that the radius
difference between a TiO2-nanoparticle and the carbon nanotube is a condition for
the uptake capacities. Further, Hilder et al. [16] considered the interaction between
a carbon nanotube and a cisplatin, a platinum based anticancer drug. Their results
showed that the nanotube will accept the drug molecule when the tube radius is at
least 4.785 Å, and the maximum suction energy occurs when the tube radius is 5.27 Å.

In this paper, we aim to study the mechanics of a two-section carbon nanotube
which has different radii and infinite lenght. First, we use an elementary mechanics
and applied mathematical modelling to find the interaction energies between two-
section carbon nanotubes and the encapsulated particles, which are a single atom and
a C60 fullerene. The concept of the suction energy is used to examine the encapsu-
lation behaviours of the particles in the nanocapsule. In the following section, the
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continuous model and the energy function are described. Sections 3 and 4 detail math-
ematical derivations for a single atom and a C60 encapsulated into a two-section carbon
nanotube, respectively. Finally, conclusions are given in Sect. 5.

2 Continuous approach and energy function

The non-bonded interaction energy can be obtained by three formulations, that are
a discrete atom-atom formulation, a continuous approach, and a hybrid discrete-
continuous model. The discrete formulation is given by

E =
∑

i

∑

j

υ(ρi j ),

where υ(ρi j ) is the potential function for atoms i and j such that ρi j defines a dis-
tance between each atom pair. When atoms are assumed to be uniformly distrib-
uted over the molecule, we can determine the interaction energy using a continuous
approximation,

E = η1η2

∫ ∫
υ(ρ) d�1 d�2,

where η1 and η2 denote the surface densities of atoms on the two molecules, and
ρ represents the distance between two typical surface elements d�1 and d�2 of the
interacting molecules. The third formula is a hybrid discrete-continuous model which
is given by

E = η1

∑

i

∫
υ(ρi ) d�1,

where η1 denotes the surface density of atoms on one molecule, and the integration
is taking over the entire surface of the molecule. These three formulations give sim-
ilar results in terms of the interaction energy between two molecules [10]. In this
research, we use a continuous approach to determine the interaction energy between
two molecules since it is suitable for symmetric nanostructures [10].

Here, we use the classical Lennard-Jones inverse power model to determine the
potential energy. The Lennard-Jones function is given by

υ(ρ) = − A

ρ6 + B

ρ12 ,

where A = 17.4 eV Å6 and B = 29 × 103 eV Å12 denote the attractive and the
repulsive constants, respectively.

The suction energy is a total work done by van der Waals interaction [9]. Here the
interaction force (F) is considered along the z-axis, that is, Fz = − ∂ E

∂z where E is the
total interaction energy. Therefore, the suction energy can be obtained by integrating
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Fz(Z) from −∞ to ∞ which is the sum of the kinetic energy when a molecule moves
along the z-axis. We also note that the molecule is accepted inside the carbon nanotube
when the suction energy is positive.

The values of the mean surface densities of a fullerene and a carbon nanotube
(graphene sheet) are employed as 0.3789 Å−2 and 0.3812 Å−2, respectively, which
are taken from the work by Cox et al. [9]. Further, the radius of a C60 fullerene is taken
to be 3.55 Å.

3 Mathematical derivation for a single atom

The interaction energy between an atom and a single-walled carbon nanotube in a
cylindrical coordinate system with a fixed cylindrical radius a is given by

E = ηg

2π∫

0

∞∫

0

(
− A

ρ6 + B

ρ12

)
a dz dθ,

where ηg is the mean surface density of atoms on a carbon nanotube, ρ denotes the
distance between a single atom and a typical atom of the surface of the tube. The
schematic model is shown in Fig. 1.

In an axially symmetric cylindrical polar coordinate system (r, z), we assume that
a single atom is located at (0, Z), and a carbon nanotube is centered on the positive
z-axis. The Cartesian coordinates of a typical atom on the tube surface is denoted by
(a1 cos θ, a1 sin θ, z); where z ∈ [0, z1] in the first part, and (a2 cos θ, a2 sin θ, z + z1)

where z ∈ [0,∞) in the second part of the tube.
From Fig. 1, ρ1 and ρ2 are the distances between a single carbon atom and the typical

atom of the first and the second parts of a carbon nanotube, respectively. Therefore,
we may deduce

ρ2
1 = (a1 cos θ)2 + (a1 sin θ)2 + (z − Z)2 = a2

1 + (z − Z)2, z ∈ [0, z1],
ρ2

2 = (a2 cos θ)2 + (a2 sin θ)2 + (z + z1 − Z)2 = a2
2 + (z + z1 − Z)2, z ∈ [0,∞),

 

 

 

 
 

Fig. 1 Schematic model of single atom entering into carbon nanotube of two sections with different radii
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where a1 and a2 are the radii of the first and the second parts of the tube, respectively,
and z1 is the lenght of the first part.

Thus we have

E = 2πa1ηg

z1∫

0

(
− A

ρ6
1

+ B

ρ12
1

)
dz + 2πa2ηg

∞∫

0

(
− A

ρ6
2

+ B

ρ12
2

)
dz.

Noting that ρ1 and ρ2 are independent of θ , then the integration with respect to θ

can be straightforwardly obtained as 2π .
For convenience, we define

In =
z1∫

0

1

ρ2n
1

dz,

and

Jn =
∞∫

0

1

ρ2n
2

dz.

Firstly, we consider

In =
z1∫

0

1
[
a2

1 + (z − Z)2]n dz.

On substituting z = Z + a1t , we get

In = a(1−2n)
1

t2∫

−t1

1

(t2 + 1)n
dt

= a(1−2n)
1

⎡

⎣
t2∫

0

1

(t2 + 1)n
dt +

t1∫

0

1

(t2 + 1)n
dt

⎤

⎦,

where t1 = Z/a1 and t2 = (z1 − Z)/a1. Then we substitute x = t (1 + t2)− 1
2 , which

gives t = x(1 − x2)− 1
2 and dt = (1 − x2)− 3

2 dx to obtain

In = a1−2n
1

⎡

⎣
x2∫

0

(1 − x2)−
3
2 +n dx +

x1∫

0

(1 − x2)−
3
2 +n dx

⎤

⎦,
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where x1 = Z
a1

[
1 +

(
Z
a1

)2
]− 1

2

and x2 =
(

z1−Z
a1

) [
1 +

(
z1−Z

a1

)2
]− 1

2

. We substitute

u = x/x2 and u = x/x1 in the first and the second terms of the above equation,
respectively, and let t = u2. From a relation B(β, γ −β)F(α, β; γ ; z) = ∫ 1

0 xβ−1(1−
x)γ−β−1(1 − xz)−α dx , we have

In = a1−2n
1

[
z1 − Z

(a2
1 + (z1 − Z)2)

1
2

F

(
3

2
− n,

1

2
; 3

2
; (z1 − Z)2

a2
1 + (z1 − Z)2

)

+ Z

(a2
1 + Z2)

1
2

F

(
3

2
− n,

1

2
; 3

2
; Z2

a2
1 + Z2

)]
, (1)

where F(α, β; γ ; z) is a hypergeometric function and B(β, γ − β) denotes a Beta
function.

Next we consider Jn ,

Jn =
∞∫

0

1
[
a2

2 + (z + z1 − Z)2]n dz.

We make a substitution z = (Z − z1) + a2t to obtain

Jn = a(1−2n)
2

∞∫

−t3

1

(t2 + 1)n
dt

= lim
R→∞

⎧
⎨

⎩a(1−2n)
2

⎡

⎣
t3∫

0

1

(t2 + 1)n
dt +

R∫

0

1

(t2 + 1)n
dt

⎤

⎦

⎫
⎬

⎭,

where t3 = −(z1 − Z)/a2. Similar to In , we make a substitution x = t (1 + t2)− 1
2 ,

and we may deduce

Jn = lim
R→∞

⎧
⎨

⎩a1−2n
2

⎡

⎣
x3∫

0

(1 − x2)n− 3
2 dx +

x4∫

0

(1 − x2)n− 3
2 dx

⎤

⎦

⎫
⎬

⎭, (2)

where x3 = (Z − z1)/
[
a2

2 + (Z − z1)
2] 1

2 and x4 = R/(1 + R2)
1
2 . For the first term

of the above equation, we substitute u = x/x3, and we define

Jn1 =
x3∫

0

(1 − x2)n− 3
2 dx = x3

1∫

0

(1 − x2
3 u2)n− 3

2 du.
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On letting t = u2, Jn1 becomes

Jn1 = x3

2

1∫

0

t−
1
2 (1 − x2

3 t)n− 3
2 dt .

Again, we use a relation B(β, γ − β)F(α, β; γ ; z) = ∫ 1
0 xβ−1(1 − x)γ−β−1(1 −

xz)−α dx to write Jn1 in terms of the hypergeometric function, which can be given by

Jn1 = Z − z1

[a2
2 + (Z − z1)2] 1

2

F

(
3

2
− n,

1

2
; 3

2
; (Z − z1)

2

a2
2 + (Z − z1)2

)
.

Similarly, using the same derivation to the second term of (2) and taking the limit
of R to infinity, we may deduce

Jn2 =
x4∫

0

(1 − x2)n− 3
2 dx = R

(1 + R2)
1
2

F

(
3

2
− n,

1

2
; 3

2
; R2

1 + R2

)
.

Finally, Jn is given by

Jn =a1−2n
2

[
Z −z1

(a2
2 +(Z −z1)2)

1
2

F

(
3

2
−n,

1

2
; 3

2
; (Z −z1)

2

a2
2 +(Z −z1)2

)
+F

(
3

2
−n,

1

2
; 3

2
; 1

)]
.

(3)

Therefore, the interaction energy between a single atom and the entire carbon
nanotube is

E = 2πa1ηg(−AI3 + B I6) + 2πa2ηg(−AJ3 + B J6),

where In and Jn are given by (1) and (3), respectively.
We aim to determine the condition for a two-section carbon nanotube which allows

an atom to enter into the first part. From the suction energy of an atom depicted in
Fig. 2, the suction energy is positive when the radius of the nanotube is greater than or
equal to 3.210 Å. This value is in a good agreement made by Cox et al. [9]. The result
shows that a single atom will be encapsulated into the first part of the nanocapsule
when a1 ≥ 3.210 Å. The interaction energy between an atom and the nanocapsule
when a1 = a2 = 3.210 Å is shown in Fig. 3a.

Now we consider the condition of a two-section carbon nanotube which allows
an atom to be encapsulated into the second part. Let S1(a) be the suction energy of
a carbon nanotube of radius a. Firstly, we consider 3.210 Å ≤ a1 < 3.739 Å. From
Fig. 2, the atom will be accepted by the second part when a1 ≤ a2 ≤ a0 where
the suction energy for the tube of radius a0 is approximately equal to the suction
energy for the tube of radius a1, S1(a0) ≈ S1(a1). For example, let a1 = 3.278 Å,
the atom can pass through the second part when 3.278 Å ≤ a2 ≤ 5.534 Å, see Fig. 2.
The energy profiles of this case are illustrated in Fig. 3b. For any given the value of
a1, we can determine the value of a2 for which the atom can be encapsulated into a
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3.278 5.534 

Fig. 2 Suction energy for single atom entering into carbon nanotube

(a) (b)

(c) (d)

Fig. 3 The interaction energies between single atom and two-section carbon nanotube when a a1 = a2 =
3.210 Å, b a1 = 3.278 Å, c a1 = 3.890 Å, and d a1 = 3.739 Å

two-section carbon nanotube. For example, if a1 = 3.345 Å, then the atom can go
inside the second part when 3.345 Å ≤ a2 ≤ 4.771 Å, and if a1 = 3.545 Å, we need
3.545 Å ≤ a2 ≤ 4.016 Å.
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Secondly, we consider the case when a1 > 3.739 Å which is greater than the radius
that gives the maximum suction energy. From Fig. 2, the atom will pass through the
second part when a

′
0 ≤ a2 ≤ a1 where S1(a

′
0) ≈ S1(a1). For example, if a1 = 3.890 Å,

then the atom can enter into the second part when 3.617 Å≤ a2 ≤ 3.890 Å as shown
in Fig. 3c. Moreover, if a1 = 4.592 Å, a single atom can go inside the second part
when 3.373 Å≤ a2 ≤ 4.592 Å, and if a1 = 5.568 Å, we require 3.276 Å≤ a2 ≤
5.568 Å.

Finally, when a1 = 3.739 Å which is the radius of the carbon nanotube that gives
the maximum suction energy, we find that the atom cannot pass through the second
part for any value of a2 except for a2 = 3.739 Å. The energy profiles of this case are
shown in Fig. 3d. We comment that the lenght of the first part z1 has only a minor
effect to the encapsulation behaviour, it changes only the amplitude of energy level.

4 Mathematical derivation for a C60 fullerene

Now we consider the system of a spherical molecule, a C60 fullerene, and a carbon
nanotube with two sections of different radii which is shown in Fig. 4. The total
interaction energy of this system can be given by

E = ηgη f

∫

�2

∫

�1

(
− A

p6 + B

p12

)
d�1 d�2,

where η f is the mean surface density for a fullerene, d�1 and d�2 are typical surface
elements of the spherical molecule of radius b and a carbon nanotube, respectively.
Note that p2 = b2 + ρ̃2 − 2bρ̃ cos φ, where ρ̃ denotes the distance between a centre
of the fullerene and a typical atom of the tube (see Fig. 11 in Cox et al. [9]). Here,
we determine the interaction energy from the first part (E1) and the second part (E2)
of the nanocapsule separately, and the total energy of the system can be obtained as
E = E1 + E2.

Following the work by Cox et al. [9], the interaction energy between a point and a
sphere of radius b is given by

 

 

 

 
 

Fig. 4 Schematic model of sphere entering into carbon nanotube of two sections with different radii
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P(ρ̃) = −4n f πb2 A

(
1

(ρ̃2 − b2)3 + 2b2

(ρ̃2 − b2)4

)

+4

5
n f πb2 B

(
5

(ρ̃2 − b2)6 + 80b2

(ρ̃2 − b2)7 + 336b4

(ρ̃2 − b2)8 + 512b6

(ρ̃2−b2)9 + 256b8

(ρ̃2 − b2)10

)
.

Now we consider the first part of the tube, where ρ̃2 = ρ2
1 = a2

1 + (z − Z)2.
Assuming λ1 = [a2

1 − b2 + (z − Z)2]/b2 so that

P(ρ1) = −4n f π

λ3
1b4

[
A

(
1 + 2

λ1

)
− B

5λ3
1b6

(
5 + 80

λ1
+ 336

λ2
1

+ 512

λ3
1

+ 256

λ4
1

)]
.

The interaction energy for the first part of a carbon nanotube E1 is given by

E1 = a1ng

π∫

−π

z1∫

0

P(ρ1) dz dθ = 2πa1ng

z1∫

0

P(ρ1) dz.

Now we consider
∫ z1

0
1
λn

1
dz and by letting z − Z =

√
a2

1 − b2 tan α, we have

z1∫

0

1

λn
1

dz =
α1∫

α0

b2n

(a2
1 − b2)n sec2n α

√
a2

1 − b2 sec2 α dα

= b2n(a2
1 − b2)

1
2 −n

α1∫

α0

cos2n−2 α dα,

where α0 = arctan

(
−Z√
a2

1−b2

)
and α1 = arctan

(
z1−Z√
a2

1−b2

)
. If we write Kn = b2n(a2

1−

b2)
1
2 −n

∫ α1
α0

cos2n−2 α dα, then E1 becomes

E1 = −8π2a1ngn f

b4

[
A (K3 + 2K4) − B

5b6 (5K6 + 80K7 + 336K8

+ 512K9 + 256K10)

]
.

Next we consider the second part of a carbon nanotube, where ρ̃2 = ρ2
2 = a2

2 +
(z + z1 − Z)2, and we assume that λ2 = [a2

2 − b2 + (z + z1 − Z)2]/b2. Similar to the
first part, we get

P(ρ2) = −4n f π

λ3
2b4

[
A

(
1 + 2

λ2

)
− B

5λ3
2b6

(
5 + 80

λ2
+ 336

λ2
2

+ 512

λ3
2

+ 256

λ4
2

)]
.
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6.360 8.243 

Fig. 5 Suction energy for C60 fullerene entering into carbon nanotube

The interaction energy for the second part of the tube E2 is given by

E2 = a2ng

π∫

−π

∞∫

0

P(ρ2) dz dθ = 2πa2ng

∞∫

0

P(ρ2) dz.

Again, by letting z + z1 − Z =
√

a2
2 − b2 tan β, we have

∞∫

0

1

λn
2

dz =
π
2∫

β0

b2n

(a2
2 − b2)n sec2n β

√
a2

2 − b2 sec2 β dβ

= b2n(a2
2 − b2)

1
2 −n

π
2∫

β0

cos2n−2 β dβ,

where β0 = arctan

(
z1−Z√
a2

2−b2

)
. We define Ln = b2n(a2

2 − b2)
1
2 −n

∫ π
2

β0
cos2n−2 β dβ,

so that the interaction energy for the second part of the tube can be written as

E2 = −8π2a2ngn f

b4

[
A (L3 + 2L4) − B

5b6 (5L6 + 80L7 + 336L8

+512L9 + 256L10)

]
.
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(a) (b)

(c) (d)

Fig. 6 The interaction energies between C60 fullerene and two-section carbon nanotube when a a1 =
a2 = 6.271 Å, b a1 = 6.360 Å, c a1 = 6.894 Å, and d a1 = 6.783 Å

Therefore the total interaction energy between a sphere and the entire carbon nan-
otube is obtained by E = E1 + E2, where

∫
cos2p ϕ dϕ = 1

22p

[(
2p

p

)
ϕ +

p−1∑

l=0

(
2p

l

)
sin(2(p − l)ϕ)

p − l

]
.

First, we aim to find the condition of a two-section carbon nanotube which allows
a spherical C60 fullerene to be encapsulated into the first part. From Fig. 5, the suction
energy of a C60 fullerene is positive when the radius of the nanotube is not less than
6.271 Å, which is in a comparison made by Cox et al. [9]. Therefore, we can conclude
that the fullerene can be encapsulated into the first part of the nanocapsule when
a1 ≥ 6.271 Å. The interaction energy between the fullerene and the nanocapsule for
a1 = a2 = 6.271 Å is illustrated in Fig. 6a. We note that the radius of a C60 fullerene
is taken to be 3.55 Å.

Now we consider the condition for a two-section carbon nanotube to allow the
fullerene to pass through the second part. Let S2(a) be the suction energy of a carbon
nanotube of radius a. From Fig. 5, if 6.271 Å ≤ a1 < 6.783 Å, then the sphere can
enter the second part when a1 ≤ a2 ≤ a0 where S2(a0) ≈ S2(a1). For example,
if a1 = 6.360 Å, the fullerene can pass through the second part when 6.360 Å ≤
a2 ≤ 8.243 Å, see the horizontal line in Fig. 5. The energy behaviours are shown
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Table 1 Some values of a1 and a2 considered here for the nanoparticles encapsulated into two-section
carbon nanotube

Particle Radius of the first part, a1 (Å) Radius of the second part, a2 (Å)

Atom I. 3.210 Å ≤ a1 < 3.739 Å a1 ≤ a2 ≤ a0, S1(a0) ≈ S1(a1)

a1 = 3.278 Å 3.278 Å ≤ a2 ≤ 5.534 Å

a1 = 3.345 Å 3.345 Å ≤ a2 ≤ 4.771 Å

a1 = 3.545 Å 3.545 Å ≤ a2 ≤ 4.016 Å.

II. a1 > 3.739 Å a
′
0 ≤ a2 ≤ a1, S1(a

′
0) ≈ S1(a1)

a1 = 3.890 Å 3.617 Å ≤ a2 ≤ 3.890 Å

a1 = 4.592 Å 3.373 Å ≤ a2 ≤ 4.592 Å

a1 = 5.568 Å 3.276 Å ≤ a2 ≤ 5.568 Å

III. a1 = 3.739 Å a2 = 3.739 Å

C60 fullerene I. 6.271 Å ≤ a1 < 6.783 Å a1 ≤ a2 ≤ a0, S2(a0) ≈ S2(a1)

a1 = 6.360 Å 6.360 Å ≤ a2 ≤ 8.243 Å

a1 = 6.403 Å 6.403 Å ≤ a2 ≤ 7.807 Å

a1 = 6.652 Å 6.652 Å ≤ a2 ≤ 6.949 Å.

II. a1 > 6.783 Å a
′
0 ≤ a2 ≤ a1, S2(a

′
0) ≈ S2(a1)

a1 = 6.894 Å 6.689 Å≤ a2 ≤ 6.894 Å

a1 = 7.464 Å 6.461 Å≤ a2 ≤ 7.464 Å

a1 = 8.589 Å 6.339 Å≤ a2 ≤ 8.589 Å

III. a1 = 6.783 Å a2 = 6.783 Å

in Fig. 6b. Moreover, if a1 = 6.403 Å, then the fullerene can enter into the second
part when 6.403 Å ≤ a2 ≤ 7.807 Å, and if a1 = 6.652 Å, then we require 6.652
Å ≤ a2 ≤ 6.949 Å.

Once a1 > 6.783 Å which is greater than the radius that gives the maximum suction
energy, the fullerene is accepted into the second part when a

′
0 ≤ a2 ≤ a1 where

S2(a
′
0) ≈ S2(a1). For example, if a1 = 6.894 Å, then the fullerene can pass through

the second part when 6.689 Å ≤ a2 ≤ 6.894 Å as illustrated in Fig. 6c. Moreover,
if a1 = 7.464 Å, the fullerene can enter into the second part when 6.461 Å ≤ a2 ≤
7.464 Å, and if a1 = 8.589 Å, then we need 6.339 Å ≤ a2 ≤ 8.589 Å.

However, if a1 = 6.783 Å which gives the maximum suction energy, the fullerene
can enter into the second part only when a2 = 6.783 Å. The interaction behaviour of
this case is shown in Fig. 6d. We also comment here that the lenght z1 effects only to
the energy level of the system, the encapsulation behaviour remains the same. Table 1
shows some examples of the radii of the first part (a1) and the radii of the second part
(a2) where the particles can be encapsulated into the two-section carbon nanotubes.

5 Summary

In this research, we design a nanocapsule by combining two different radii of carbon
nanotubes and then consider the mechanics of the encapsulated particles. First, we

123



502 J Math Chem (2014) 52:489–503

determine the explicit formulae for the interaction energies between the two-section
carbon nanotubes and the encapsulated particles which are a single atom and a C60
fullerene by using a continuous approach and the well-known Lennard-Jones potential
function. The closed forms of the interaction energies for the atom and the C60 fullerene
are obtained.

Further, we find the suction energies of the encapsulated particles to determine the
encapsulation behaviours. In terms of a single atom, our results show that the atom can
enter into the first part when the suction energy is positive, that is, when a1 ≥ 3.210
Å. The condition for the atom to enter into the second part is considered in three cases.
First, when 3.210 Å ≤ a1 < 3.739 Å, the atom can enter into the second part when
a1 ≤ a2 ≤ a0 where the suction energy for the tube radius a0 is approximately equal
to the suction energy for the tube radius a1, S1(a0) ≈ S1(a1) where S1(a) denotes the
suction energy between an atom and a carbon nanotube of radius a. The second case
is that a1 > 3.739 Å, the atom can be encapsulated into the tube when a

′
0 ≤ a2 ≤ a1

where S1(a
′
0) ≈ S1(a1). Finally, when a1 = 3.739 Å which is the radius of the carbon

nanotube that gives the maximum suction energy, there is only one value of a2 that
allows the atom to pass through the second part which is a2 = a1.

For a C60 fullerene, it can enter into the first part when a1 ≥ 6.271 Å. The condition
for the fullerene entering into the second part is also considered in three cases. When
6.271 Å ≤ a1 < 6.783 Å, the fullerene can be encapsulated into the second part when
a1 ≤ a2 ≤ a0 where S2(a0) ≈ S2(a1) and S2(a) is the suction energy between the
fullerene and a carbon nanotube of radius a. If a1 > 6.783 Å, the fullerene can go
inside the second part when a

′
0 ≤ a2 ≤ a1 where S2(a

′
0) ≈ S2(a1). For a1 = 6.783 Å

which gives the maximum suction energy of fullerene, the fullerene can go inside the
second part when a2 = a1. The values of the tube radii a1 and a2 studied in this paper
for which an atom and a C60 fullerene can be encapsulated inside are completely given
in Table 1.

From our results, we obtain a basic theoretical knowledge but useful. The under-
standing obtained from our model could contribute considerable insight into the basic
concepts of the encapsulation behaviour. Our work thus could be viewed as the first
step toward designing new nanodevices where the nanocapsule may be used as a drug
container which can be utilised in pharmaceuticals and cosmetics.
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